Problems on Scalar Fields

This material corresponds roughly to sections $14.1,14.2,14.3,14.4,14.5$ and 14.6 in the book.

Problem 1. [Maxwell relation] Thermodynamics teaches that the energy E of a rigid container of gas is a function of its entropy S and volume $V: E=E(S, V)$. Its temperature is given by $T=\frac{\partial E}{\partial S}$ and its pressure by $P=-\frac{\partial E}{\partial V}$. Show that $\frac{\partial T}{\partial V}=-\frac{\partial P}{\partial S}$. This is a Maxwell relation.

The relation is usually written $\left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial P}{\partial S}\right)_{V}$ in physics and chemistry texts to make it clear that S is held constant on the left and V is held constant on the right when computing the partial derivatives.

Notice that

$$
\begin{aligned}
& \frac{\partial T}{\partial V} \\
= & \frac{\partial}{\partial V}\left(\frac{\partial E}{\partial S}\right) \\
= & \frac{\partial}{\partial S}\left(\frac{\partial E}{\partial V}\right) \\
= & -\frac{\partial P}{\partial S}
\end{aligned}
$$

Problem 2. [Wave equation] Let $u(x, t)=f(x-v t)+g(x+v t)$ where f, g are scalar valued functions (so they take real values). Show that

$$
\begin{equation*}
v^{2} \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}} \tag{1}
\end{equation*}
$$

by applying the chain rule (or tree diagrams). This is a partial differential equation, called the wave equation.

We define the variables

$$
\left\{\begin{array}{l}
z=x-v t \tag{2}\\
w=x+v t
\end{array}\right.
$$

so that we can write the function u as

$$
\begin{equation*}
u=f(z)+g(w) \tag{3}
\end{equation*}
$$

So using the tree diagram we can consider u as a function of z, w, each of which is a function of x, t :

Using the chain rule:

$$
\begin{aligned}
u_{x} & =u_{z} z_{x}+u_{w} w_{x} \\
u_{t} & =u_{z} z_{t}+u_{w} w_{t} \\
u_{x x} & =\left(u_{z}\right)_{x} z_{x}+u_{z} z_{x x}+\left(u_{w}\right)_{x} w_{x}+u_{w} w_{x x} \\
& =\left(u_{z z} z_{x}+u_{z w} w_{x}\right) z_{x}+u_{z} z_{x x}+\left(u_{w z} z_{x}+u_{w w} w_{x}\right) w_{x}+u_{w} w_{x x} \\
& =\left(\frac{d^{2} f}{d z^{2}} \cdot 1+0 \cdot 1\right) 1+\frac{d f}{d z} \cdot 0+\left(0 \cdot 1+\frac{d^{2} g}{d w^{2}} \cdot 1\right) 1+\frac{d g}{d w} \cdot 0 \\
& =\frac{d^{2} f}{d z^{2}}+\frac{d^{2} g}{d w^{2}} \\
u_{t t} & =\left(u_{z}\right)_{t} z_{t}+u_{z} z_{t t}+\left(u_{w}\right)_{t} w_{t}+u_{w} w_{t t} \\
& =\left(u_{z z} z_{t}+u_{z w} w_{t}\right) z_{t}+u_{z} z_{t t}+\left(u_{w z} z_{t}+u_{w w} w_{t}\right) w_{t}+u_{w} w_{t t} \\
& =\left(\frac{d^{2} f}{d z^{2}} \cdot(-v)+0 \cdot(v)\right)(-v)+\frac{d f}{d z} \cdot 0+\left(0 \cdot(-v)+\frac{d^{2} g}{d w^{2}} \cdot(v)\right)(v)+\frac{d g}{d w} \cdot 0 \\
& =v^{2} \frac{d^{2} f}{d z^{2}}+v^{2} \frac{d^{2} g}{d w^{2}}
\end{aligned}
$$

Notice that the formulas for $u_{x x}$ and $u_{t t}$ clearly show that

$$
\begin{equation*}
v^{2} u_{x x}=u_{t t} \tag{5}
\end{equation*}
$$

so u satisfies the wave equation.
Problem 3. The equation $z=x f(y / x)$ defines a surface whenever $x \neq 0$ and f is a real valued function. Find the equation of the tangent plane to the surface passing through the point $\left(x_{0}, y_{0}, x_{0} f\left(y_{0} / x_{0}\right)\right)$. Does the origin $(0,0,0)$ belong to this plane?

In this case the equation of the surface is

$$
\begin{equation*}
g(x, y, z)=x f(y / x)-z \tag{6}
\end{equation*}
$$

The gradient of g is

$$
\begin{aligned}
\nabla g & =\left(f(y / x)+x f^{\prime}(y / x) \cdot\left(-y / x^{2}\right), x f^{\prime}(y / x) \cdot(1 / x),-1\right) \\
& =\left(f(y / x)-\frac{y}{x} f^{\prime}(y / x), f^{\prime}(y / x),-1\right)
\end{aligned}
$$

At the point $\left(x_{0}, y_{0}, x_{0} f\left(y_{0} / x_{0}\right)\right)$ the normal vector will be

$$
\begin{equation*}
\mathbf{n}=\nabla g\left(x_{0}, y_{0}, z_{0}\right)=\left(f\left(y_{0} / x_{0}\right)-\frac{y_{0}}{x_{0}} f^{\prime}\left(y_{0} / x_{0}\right), f^{\prime}\left(y_{0} / x_{0}\right),-1\right) \tag{7}
\end{equation*}
$$

so the equation of the normal plane to the surface passing through the point is

$$
\begin{equation*}
\left[f\left(y_{0} / x_{0}\right)-\frac{y_{0}}{x_{0}} f^{\prime}\left(y_{0} / x_{0}\right)\right] x+f^{\prime}\left(y_{0} / x_{0}\right) y-z=\left[f\left(y_{0} / x_{0}\right)-\frac{y_{0}}{x_{0}} f^{\prime}\left(y_{0} / x_{0}\right)\right] x_{0}+f^{\prime}\left(y_{0} / x_{0}\right) \cdot y_{0}-x_{0} f\left(y_{0} / x_{0}\right) \tag{8}
\end{equation*}
$$

which we can simply as

$$
\begin{equation*}
\left[f\left(y_{0} / x_{0}\right)-\frac{y_{0}}{x_{0}} f^{\prime}\left(y_{0} / x_{0}\right)\right] x+f^{\prime}\left(y_{0} / x_{0}\right) y-z=0 \tag{9}
\end{equation*}
$$

Observe that the origin $(0,0,0)$ does satisfy the equation of this plane.
Problem 4. Let $f(x, y)=x-y^{2}$ and $g(x, y)=2 x+\ln y$. Show that the level curves of f and g are orthogonal at every point where they meet.

The level curve at height $z=c$ for f solves the equation

$$
\begin{equation*}
x-y^{2}=c \tag{10}
\end{equation*}
$$

This can be used to write x as a function of y as

$$
\begin{equation*}
x=c+y^{2} \tag{11}
\end{equation*}
$$

so the position vector of this level curve is

$$
\begin{equation*}
\mathbf{r}_{f}(y)=(x, y, z)=\left(c+y^{2}, y, c\right) \tag{12}
\end{equation*}
$$

so the velocity vector to the curve is

$$
\begin{equation*}
\frac{d \mathbf{r}_{f}}{d y}=(2 y, 1,0) \tag{13}
\end{equation*}
$$

On the other hand, the level curve at height $z=c$ for g solves the equation

$$
\begin{equation*}
2 x+\ln y=c \tag{14}
\end{equation*}
$$

This can be used to write x as a function of y as

$$
\begin{equation*}
x=\frac{c-\ln y}{2} \tag{15}
\end{equation*}
$$

so the position vector of this level curve is

$$
\begin{equation*}
\mathbf{r}_{g}(y)=(x, y, z)=\left(\frac{c-\ln y}{2}, y, c\right) \tag{16}
\end{equation*}
$$

so the velocity vector to the curve is

$$
\begin{equation*}
\frac{d \mathbf{r}_{g}}{d y}=\left(-\frac{1}{2 y}, 1,0\right) \tag{17}
\end{equation*}
$$

Notice that

$$
\begin{equation*}
\frac{d \mathbf{r}_{f}}{d y} \cdot \frac{d \mathbf{r}_{g}}{d y}=(2 y, 1,0) \cdot\left(-\frac{1}{2 y}, 1,0\right)=-1+1=0 \tag{18}
\end{equation*}
$$

so in fact the velocity vectors are orthogonal.
Problem 5. If three resistors R_{1}, R_{2}, R_{3} are connected in parallel, the total electrical resistance is determined by the equation

$$
\begin{equation*}
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} \tag{19}
\end{equation*}
$$

Find $\frac{\partial R}{\partial R_{1}}$.
We differentiate both sides of the equation with respect to R_{1} :

$$
\begin{equation*}
\frac{\partial}{\partial R_{1}}\left(R^{-1}\right)=\frac{\partial}{\partial R_{1}}\left(\frac{1}{R_{1}}\right)+\frac{\partial}{\partial R_{1}}\left(\frac{1}{R_{2}}\right)+\frac{\partial}{\partial R_{1}}\left(\frac{1}{R_{3}}\right) \tag{20}
\end{equation*}
$$

By the chain rule this is the same as

$$
\begin{equation*}
-\left(\frac{1}{R}\right)^{2} \frac{\partial R}{\partial R_{1}}=-\frac{1}{R_{1}^{2}} \tag{21}
\end{equation*}
$$

so this is the same as

$$
\begin{equation*}
-\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)^{2} \frac{\partial R}{\partial R_{1}}=-\frac{1}{R_{1}^{2}} \tag{22}
\end{equation*}
$$

In other words

$$
\begin{equation*}
\frac{\partial R}{\partial R_{1}}=\frac{1}{\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)^{2}} \cdot \frac{1}{R_{1}^{2}}=\frac{1}{\left(\frac{R_{2} R_{3}+R_{1} R_{3}+R_{1} R_{2}}{R_{1} R_{2} R_{3}}\right)^{2}} \frac{1}{R_{1}^{2}}=\frac{R_{2}^{2} R_{3}^{2}}{\left(R_{2} R_{3}+R_{1} R_{3}+R_{1} R_{2}\right)^{2}} \tag{23}
\end{equation*}
$$

Another way to find is by finding R as a function of R_{1}, R_{2}, R_{3} explicitly. Namely, notice that the equation for $\frac{1}{R}$ is equivalent to

$$
\begin{equation*}
\frac{1}{R}=\frac{R_{2} R_{3}+R_{1} R_{3}+R_{1} R_{2}}{R_{1} R_{2} R_{3}} \tag{24}
\end{equation*}
$$

or

$$
\begin{equation*}
R=\frac{R_{1} R_{2} R_{3}}{R_{2} R_{3}+R_{1} R_{3}+R_{1} R_{2}} \tag{25}
\end{equation*}
$$

We can find the partial derivative using the quotient rule

$$
\begin{equation*}
\frac{\partial R}{\partial R_{1}}=\frac{R_{2} R_{3}\left(R_{2} R_{3}+R_{1} R_{3}+R_{1} R_{2}\right)-R_{1} R_{2} R_{3}\left(R_{3}+R_{2}\right)}{\left(R_{2} R_{3}+R_{1} R_{3}+R_{1} R_{2}\right)^{2}}=\frac{R_{2}^{2} R_{3}^{2}}{\left(R_{2} R_{3}+R_{1} R_{3}+R_{1} R_{2}\right)^{2}} \tag{26}
\end{equation*}
$$

Problem 6. Suppose that a duck is swimming in a circle, $x=\cos t, y=\sin t$, while the water temperature is given by the formula $T=x^{2} e^{y}-x y^{3}$. Find $\frac{d T}{d t}$ using the chain rule.

Here is the diagram

Therefore

$$
\begin{aligned}
& \frac{d T}{d t} \\
= & \frac{\partial T}{\partial x} \frac{d x}{d t}+\frac{\partial T}{\partial y} \frac{d x}{d t} \\
= & \left(2 x e^{y}-y^{3}\right)(-\sin t)+\left(x^{2} e^{y}-3 x y^{2}\right)(\cos t) \\
= & \left(2 \cos t e^{\sin t}-\sin ^{3} t\right)(-\sin t)+\left(\cos ^{2} t e^{\sin t}-3 \cos t \sin ^{2} t\right)(\cos t)
\end{aligned}
$$

Problem 7. Show that the tangent plane at each point $\left(x_{0}, y_{0}, z_{0}\right)$ of the cone $z=\sqrt{x^{2}+y^{2}},\left(\right.$ with $\left.x_{0} \neq 0, y_{0} \neq 0\right)$ contains the line passing through $\left(x_{0}, y_{0}, z_{0}\right)$ and the origin.

Notice that the equation of the cone can be written as $z^{2}=x^{2}+y^{2}$ so we can work with the equation of the surface

$$
\begin{equation*}
g(x, y, z)=x^{2}+y^{2}-z^{2} \tag{28}
\end{equation*}
$$

The gradient is

$$
\begin{equation*}
\nabla g=(2 x, 2 y,-2 z) \tag{29}
\end{equation*}
$$

So at the point $\left(x_{0}, y_{0}, \sqrt{x_{0}^{2}+y_{0}^{2}}\right)$ the equation of the tangent plane is $\left[\mathbf{n}=\left(2 x_{0}, 2 y_{0},-2 \sqrt{x_{0}^{2}+y_{0}^{2}}\right)\right.$ in this case]

$$
\begin{equation*}
2 x_{0} x+2 y_{0} y-2 \sqrt{x_{0}^{2}+y_{0}^{2}} z=2 x_{0} x_{0}+2 y_{0} y_{0}-2\left(x_{0}^{2}+y_{0}^{2}\right)=0 \tag{30}
\end{equation*}
$$

The line passing through $\left(x_{0}, y_{0}, z_{0}\right)=\left(x_{0}, y_{0}, \sqrt{x_{0}^{2}+y_{0}^{2}}\right)$ and the origin is

$$
\begin{equation*}
\mathbf{r}(t)=t\left(x_{0}, y_{0}, \sqrt{x_{0}^{2}+y_{0}^{2}}\right) \tag{31}
\end{equation*}
$$

so we need to check that each point on the line satisfies the equation of the plane. We plug in $t x_{0}, t y_{0}, t \sqrt{x_{0}^{2}+y_{0}^{2}}$ as our values for x, y, z on the left hand side of the equation
of the plane

$$
\begin{aligned}
& 2 x_{0} x+2 y_{0} y-z \\
= & 2 x_{0} t x_{0}+2 y_{0} t y_{0}-2 \sqrt{x_{0}^{2}+y_{0}^{2}} t \sqrt{x_{0}^{2}+y_{0}^{2}} \\
= & t\left(2 x_{0}^{2}+2 y_{0}^{2}-2\left(x_{0}^{2}+y_{0}^{2}\right)\right) \\
= & t \cdot 0 \\
= & 0
\end{aligned}
$$

Notice that this equation holds regardless of the specific value of t, so we verified the assumption.

Problem 8. Let $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ and $r=\|\mathbf{r}\|=\sqrt{x^{2}+y^{2}+z^{2}}$.
a) Show that $\nabla\left(\frac{1}{r}\right)=-\frac{r}{r^{3}}$ whenever $r \neq 0$.

Notice that x, y, z appear in a symmetric fashion in each of the formulas, so it suffices to compute $\frac{\partial}{\partial x}\left(\frac{1}{r}\right)$ to figure out the pattern. For this we use the product rule

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(\frac{1}{r}\right)=-\frac{1}{r^{2}} \frac{\partial}{\partial x} r=-\frac{1}{r^{2}} \frac{\partial}{\partial x} \sqrt{x^{2}+y^{2}+z^{2}}=-\frac{1}{x^{2}+y^{2}+z^{2}} \cdot \frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}=-\frac{x}{r^{3}} \tag{32}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\nabla\left(\frac{1}{r}\right)=\left(\frac{\partial}{\partial x} r^{-1}, \frac{\partial}{\partial y} r^{-1}, \frac{\partial}{\partial z} r^{-1}\right)=\left(-\frac{x}{r^{3}},-\frac{y}{r^{3}},-\frac{z}{r^{3}}\right)=-\frac{1}{r^{3}} \mathbf{r} \tag{33}
\end{equation*}
$$

b) What is $\left\|\nabla\left(\frac{1}{r}\right)\right\|$?

$$
\begin{equation*}
\left\|\nabla r^{-1}\right\|=\left\|-\frac{1}{r^{3}} \mathbf{r}\right\|=\frac{1}{r^{3}}\|\mathbf{r}\|=\frac{r}{r^{3}}=\frac{1}{r^{2}} \tag{34}
\end{equation*}
$$

c) In electrostatics, the force \mathbf{F}_{e} of attraction between two particles of opposite charge is given by $\mathbf{F}_{e}=k \frac{\mathbf{r}}{r^{3}}$. A potential function V for the electrostatic force is a scalar function $V=V(x, y, z)$ such that $\nabla V=-\mathbf{F}_{e}$ (here I am using the physicist convention for the potential). Find a potential V for \mathbf{F}_{e}.

Take

$$
\begin{equation*}
V=-\frac{k}{r} \tag{35}
\end{equation*}
$$

and notice that thanks to part a)

$$
\begin{equation*}
\nabla V=-\nabla(k / r)=-k \nabla(1 / r)=k \frac{\mathbf{r}}{r^{3}}=\mathbf{F}_{e} \tag{36}
\end{equation*}
$$

as desired.
Problem 9. Show that the surface $x^{2}-2 y z+y^{3}=4$ is perpendicular to any member of the family of surfaces $x^{2}+1=(2-4 a) y^{2}+a z^{2}$ at the point of intersection ($1,-1,2$).

The equation for the first surface is

$$
\begin{equation*}
g_{1}(x, y, z)=x^{2}-2 y z+y^{3}-4=0 \tag{37}
\end{equation*}
$$

Which has gradient

$$
\begin{equation*}
\nabla g_{1}=\left(2 x,-2 z+3 y^{2},-2 y\right) \tag{38}
\end{equation*}
$$

so the normal vector at the point $(1,-1,2)$ is

$$
\begin{equation*}
\nabla g_{1}(1,-1,2)=(2,-1,2) \tag{39}
\end{equation*}
$$

The equation for the second surface is

$$
\begin{equation*}
g_{2}(x, y, z)=x^{2}+1-(2-4 a) y^{2}-a z^{2} \tag{40}
\end{equation*}
$$

so the gradient is

$$
\begin{equation*}
\nabla g_{2}=(2 x,-2(2-4 a) y,-2 a z) \tag{41}
\end{equation*}
$$

The normal vector at the point $(1,-1,2)$ is

$$
\begin{equation*}
\nabla g_{2}(1,-1,2)=(2,4-8 a,-4 a) \tag{42}
\end{equation*}
$$

Notice that $\nabla g_{1}(1,-1,2)$ and $\nabla g_{2}(1,-1,2)$ are orthogonal since

$$
\begin{equation*}
(2,-1,2) \cdot(2,4-8 a,-4 a)=4+8 a-4-8 a=0 \tag{43}
\end{equation*}
$$

so the tangent planes indeed intersect orthogonally.
Problem 10. Find the directional derivative of $U(x, y, z)=2 x^{3} y-3 y^{2} z$ at the point $P=(1,2,-1)$ in a direction toward the point $Q=(3,-1,5)$.

The direction vector is

$$
\begin{equation*}
\mathbf{v}=\overrightarrow{P Q}=Q-P=(3,-1,5)-(1,2,-1)=(2,-3,6) \tag{44}
\end{equation*}
$$

We need to normalize it

$$
\begin{equation*}
\mathbf{e}_{\mathbf{v}}=\frac{(2,-3,6)}{\sqrt{2^{2}+(-3)^{2}+6^{2}}}=\frac{1}{7}(2,-3,6) \tag{45}
\end{equation*}
$$

On the other hand the, gradient is

$$
\begin{equation*}
\nabla U=\left(6 x^{2} y, 2 x^{3}-6 y z,-3 y^{2}\right) \tag{46}
\end{equation*}
$$

so at the point $(1,2,-1)$ the gradient is

$$
\begin{equation*}
\nabla U(1,2,-1)=(12,14,-12) \tag{47}
\end{equation*}
$$

and the directional derivative is
$D_{\mathbf{v}} U(1,2,-1)=\nabla U(1,2,-1) \cdot \mathbf{e}_{\mathbf{v}}=(12,14,-12) \cdot \frac{1}{7}(2,-3,6)=\frac{24-42-72}{7}=-\frac{90}{7}$

