
MATH 251, Mariano Echeverria

Problems on Scalar Fields

This material corresponds roughly to sections 14.1, 14.2, 14.3, 14.4, 14.5 and 14.6 in
the book.

Problem 1. [Maxwell relation] Thermodynamics teaches that the energy E of a
rigid container of gas is a function of its entropy S and volume V : E = E(S, V ).
Its temperature is given by T = @E

@S and its pressure by P = �@E
@V . Show that

@T
@V = �@P

@S . This is a Maxwell relation.
The relation is usually written

�
@T
@V

�
S
= �

�
@P
@S

�
V

in physics and chemistry
texts to make it clear that S is held constant on the left and V is held constant
on the right when computing the partial derivatives.

Notice that

@T

@V

=
@

@V

✓
@E

@S

◆

=
@

@S

✓
@E

@V

◆

=� @P

@S

Problem 2. [Wave equation] Let u(x, t) = f(x � vt) + g(x + vt) where f, g are
scalar valued functions (so they take real values). Show that

v2
@2u

@x2
=

@2u

@t2
(1)

by applying the chain rule (or tree diagrams). This is a partial differential
equation, called the wave equation.

We define the variables ⇢
z = x� vt
w = x+ vt

(2)

so that we can write the function u as

u = f(z) + g(w) (3)
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So using the tree diagram we can consider u as a function of z, w, each of which is a
function of x, t:

u
/ \

z w
/\ /\

x t x t

(4)

Using the chain rule:

ux =uzzx + uwwx

ut =uzzt + uwwt

uxx =(uz)xzx + uzzxx + (uw)xwx + uwwxx

=(uzzzx + uzwwx)zx + uzzxx + (uwzzx + uwwwx)wx + uwwxx

=(
d2f

dz2
· 1 + 0 · 1)1 + df

dz
· 0 + (0 · 1 + d2g

dw2
· 1)1 + dg

dw
· 0

=
d2f

dz2
+

d2g

dw2

utt =(uz)tzt + uzztt + (uw)twt + uwwtt

=(uzzzt + uzwwt)zt + uzztt + (uwzzt + uwwwt)wt + uwwtt

=(
d2f

dz2
· (�v) + 0 · (v))(�v) +

df

dz
· 0 + (0 · (�v) +

d2g

dw2
· (v))(v) + dg

dw
· 0

=v2
d2f

dz2
+ v2

d2g

dw2

Notice that the formulas for uxx and utt clearly show that

v2uxx = utt (5)

so u satisfies the wave equation.

Problem 3. The equation z = xf(y/x) defines a surface whenever x 6= 0 and
f is a real valued function. Find the equation of the tangent plane to the
surface passing through the point (x0, y0, x0f(y0/x0)). Does the origin (0, 0, 0)
belong to this plane?

In this case the equation of the surface is

g(x, y, z) = xf(y/x)� z (6)

The gradient of g is

rg =
�
f(y/x) + xf 0(y/x) · (�y/x2), xf 0(y/x) · (1/x),�1

�

=
⇣
f(y/x)� y

x
f 0(y/x), f 0(y/x),�1

⌘
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At the point (x0, y0, x0f(y0/x0)) the normal vector will be

n = rg(x0, y0, z0) =

✓
f(y0/x0)�

y0
x0

f 0(y0/x0), f
0(y0/x0),�1

◆
(7)

so the equation of the normal plane to the surface passing through the point is

f(y0/x0)�

y0
x0

f 0(y0/x0)

�
x+f 0(y0/x0)y�z =


f(y0/x0)�

y0
x0

f 0(y0/x0)

�
x0+f 0(y0/x0)·y0�x0f(y0/x0)

(8)
which we can simply as


f(y0/x0)�

y0
x0

f 0(y0/x0)

�
x+ f 0(y0/x0)y � z = 0 (9)

Observe that the origin (0, 0, 0) does satisfy the equation of this plane.

Problem 4. Let f(x, y) = x � y2 and g(x, y) = 2x + ln y. Show that the level
curves of f and g are orthogonal at every point where they meet.

The level curve at height z = c for f solves the equation

x� y2 = c (10)

This can be used to write x as a function of y as

x = c+ y2 (11)

so the position vector of this level curve is

rf (y) = (x, y, z) = (c+ y2, y, c) (12)

so the velocity vector to the curve is

drf
dy

= (2y, 1, 0) (13)

On the other hand, the level curve at height z = c for g solves the equation

2x+ ln y = c (14)

This can be used to write x as a function of y as

x =
c� ln y

2
(15)

so the position vector of this level curve is

rg(y) = (x, y, z) =

✓
c� ln y

2
, y, c

◆
(16)
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so the velocity vector to the curve is

drg
dy

=

✓
� 1

2y
, 1, 0

◆
(17)

Notice that
drf
dy

· drg
dy

= (2y, 1, 0) ·
✓
� 1

2y
, 1, 0

◆
= �1 + 1 = 0 (18)

so in fact the velocity vectors are orthogonal.

Problem 5. If three resistors R1, R2, R3 are connected in parallel, the total
electrical resistance is determined by the equation

1

R
=

1

R1
+

1

R2
+

1

R3
(19)

Find @R
@R1

.
We differentiate both sides of the equation with respect to R1:

@

@R1

�
R�1

�
=

@

@R1

✓
1

R1

◆
+

@

@R1

✓
1

R2

◆
+

@

@R1

✓
1

R3

◆
(20)

By the chain rule this is the same as

�
✓
1

R

◆2 @R

@R1
= � 1

R2
1

(21)

so this is the same as

�
✓

1

R1
+

1

R2
+

1

R3

◆2 @R

@R1
= � 1

R2
1

(22)

In other words

@R

@R1
=

1
⇣

1
R1

+ 1
R2

+ 1
R3

⌘2 · 1

R2
1

=
1

⇣
R2R3+R1R3+R1R2

R1R2R3

⌘2

1

R2
1

=
R2

2R
2
3

(R2R3 +R1R3 +R1R2)2

(23)
Another way to find is by finding R as a function of R1, R2, R3 explicitly. Namely, notice
that the equation for 1

R is equivalent to

1

R
=

R2R3 +R1R3 +R1R2

R1R2R3
(24)

or
R =

R1R2R3

R2R3 +R1R3 +R1R2
(25)

4



We can find the partial derivative using the quotient rule

@R

@R1
=

R2R3(R2R3 +R1R3 +R1R2)�R1R2R3(R3 +R2)

(R2R3 +R1R3 +R1R2)2
=

R2
2R

2
3

(R2R3 +R1R3 +R1R2)2

(26)

Problem 6. Suppose that a duck is swimming in a circle, x = cos t, y = sin t,
while the water temperature is given by the formula T = x2ey � xy3. Find dT

dt
using the chain rule.

Here is the diagram
T

/ \
x y
| |
t t

(27)

Therefore

dT

dt

=
@T

@x

dx

dt
+

@T

@y

dx

dt

=(2xey � y3)(� sin t) + (x2ey � 3xy2)(cos t)

=(2 cos tesin t � sin3 t)(� sin t) + (cos2 tesin t � 3 cos t sin2 t)(cos t)

Problem 7. Show that the tangent plane at each point (x0, y0, z0) of the cone
z =

p
x2 + y2, (with x0 6= 0, y0 6= 0) contains the line passing through (x0, y0, z0)

and the origin.

Notice that the equation of the cone can be written as z2 = x2 + y2 so we can work
with the equation of the surface

g(x, y, z) = x2 + y2 � z2 (28)

The gradient is
rg = (2x, 2y,�2z) (29)

So at the point (x0, y0,
p
x20 + y20) the equation of the tangent plane is [n = (2x0, 2y0,�2

p
x20 + y20)

in this case]

2x0x+ 2y0y � 2
q

x20 + y20z = 2x0x0 + 2y0y0 � 2(x20 + y20) = 0 (30)

The line passing through (x0, y0, z0) = (x0, y0,
p
x20 + y20) and the origin is

r(t) = t(x0, y0,
q
x20 + y20) (31)

so we need to check that each point on the line satisfies the equation of the plane. We
plug in tx0, ty0, t

p
x20 + y20 as our values for x, y, z on the left hand side of the equation
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of the plane

2x0x+ 2y0y � z

=2x0tx0 + 2y0ty0 � 2
q
x20 + y20t

q
x20 + y20

=t
�
2x20 + 2y20 � 2(x20 + y20)

�

=t · 0
=0

Notice that this equation holds regardless of the specific value of t, so we verified the
assumption.

Problem 8. Let r = xi+ yj+ zk and r = krk =
p

x2 + y2 + z2.
a) Show that r

�
1
r

�
= � r

r3 whenever r 6= 0.
Notice that x, y, z appear in a symmetric fashion in each of the formulas, so it suffices

to compute @
@x

�
1
r

�
to figure out the pattern. For this we use the product rule

@

@x

✓
1

r

◆
= � 1

r2
@

@x
r = � 1

r2
@

@x

p
x2 + y2 + z2 = � 1

x2 + y2 + z2
· xp

x2 + y2 + z2
= � x

r3

(32)
Therefore

r
✓
1

r

◆
=

✓
@

@x
r�1,

@

@y
r�1,

@

@z
r�1

◆
=

⇣
� x

r3
,� y

r3
,� z

r3

⌘
= � 1

r3
r (33)

b) What is kr
�
1
r

�
k?

krr�1k = k � 1

r3
rk =

1

r3
krk =

r

r3
=

1

r2
(34)
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c) In electrostatics, the force Fe of attraction between two particles of op-
posite charge is given by Fe = k r

r3 . A potential function V for the electrostatic
force is a scalar function V = V (x, y, z) such that rV = �Fe (here I am using
the physicist convention for the potential). Find a potential V for Fe.

Take
V = �k

r
(35)

and notice that thanks to part a)

rV = �r(k/r) = �kr(1/r) = k
r

r3
= Fe (36)

as desired.

Problem 9. Show that the surface x2 � 2yz + y3 = 4 is perpendicular to any
member of the family of surfaces x2 + 1 = (2 � 4a)y2 + az2 at the point of
intersection (1,�1, 2).

The equation for the first surface is

g1(x, y, z) = x2 � 2yz + y3 � 4 = 0 (37)

Which has gradient
rg1 = (2x,�2z + 3y2,�2y) (38)

so the normal vector at the point (1,�1, 2) is

rg1(1,�1, 2) = (2,�1, 2) (39)

The equation for the second surface is

g2(x, y, z) = x2 + 1� (2� 4a)y2 � az2 (40)

so the gradient is
rg2 = (2x,�2(2� 4a)y,�2az) (41)

The normal vector at the point (1,�1, 2) is

rg2(1,�1, 2) = (2, 4� 8a,�4a) (42)

Notice that rg1(1,�1, 2) and rg2(1,�1, 2) are orthogonal since

(2,�1, 2) · (2, 4� 8a,�4a) = 4 + 8a� 4� 8a = 0 (43)

so the tangent planes indeed intersect orthogonally.

Problem 10. Find the directional derivative of U(x, y, z) = 2x3y � 3y2z at the
point P = (1, 2,�1) in a direction toward the point Q = (3,�1, 5).

The direction vector is

v =
��!
PQ = Q� P = (3,�1, 5)� (1, 2,�1) = (2,�3, 6) (44)

We need to normalize it

ev =
(2,�3, 6)p

22 + (�3)2 + 62
=

1

7
(2,�3, 6) (45)
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On the other hand the, gradient is

rU = (6x2y, 2x3 � 6yz,�3y2) (46)

so at the point (1, 2,�1) the gradient is

rU(1, 2,�1) = (12, 14,�12) (47)

and the directional derivative is

DvU(1, 2,�1) = rU(1, 2,�1) · ev = (12, 14,�12) · 1
7
(2,�3, 6) =

24� 42� 72

7
= �90

7
(48)
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