MATH 251, Mariano Echeverria

Problems on Scalar Fields

This material corresponds roughly to sections 14.1, 14.2, 14.3, 14.4, 14.5 and 14.6 in
the book.

Problem 1. [Maxwell relation] Thermodynamics teaches that the energy F of a
rigid container of gas is a function of its entropy S and volume V: E = E(S, V).

Its temperature is given by T = g—g and its pressure by P = _%' Show that
g—a = —‘g—g . This is a Maxwell relation.
The relation is usually written (g—T)S = — (g—g)v in physics and chemistry

texts to make it clear that S is held constant on the left and V is held constant
on the right when computing the partial derivatives.
Notice that
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Problem 2. [Wave equation| Let u(z,t) = f(z — vt) + g(x + vt) where f,g are
scalar valued functions (so they take real values). Show that
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by applying the chain rule (or tree diagrams). This is a partial differential
equation, called the wave equation.
We define the variables
z=x—0vt
{w =x+ot @)

so that we can write the function u as

u=f(2) +g(w) (3)



So using the tree diagram we can consider u as a function of z, w, each of which is a
function of x, t:

z w (4)

Using the chain rule:
Uy =UzZg + Uy Wy

Up =Uz 2t + UyWy

Uzz =(Uz)22e + Uz Zee + (Uw)2Wa + Uy Waz
=(Uzz2g + UzwWy) 2 + Uz Zap + (U2 2z + UnwWz ) We + Uy Weg

d*f df d*g dg
L a0+ Y 0r01+ 82 11+ Y
(dz2 + )1+ dz + + dw? N+ dw
_&f g
S dz? 0 dw?

gy =(Uz) 2t + Uz 2et + (Un)tWe + UWyt
:(Uzzzt + Uzwwt)zt + U2y + (Uwzzt + wawt)wt + Uy Wyt

d*f df d*g dg
= (0) + 0 @) () + L0+ (0 () + 25 (@) @) + 50
df d?g
2 2
V5 TV de?
Notice that the formulas for u,, and uy clearly show that
V2 Upy = ust (5)

so u satisfies the wave equation.

Problem 3. The equation z = zf(y/z) defines a surface whenever z # 0 and
f is a real valued function. Find the equation of the tangent plane to the
surface passing through the point (xg, v, zof(y0/%0)). Does the origin (0,0,0)
belong to this plane?

In this case the equation of the surface is

g(m,y,z) :xf(y/az)—z (6)
The gradient of g is
Vo= (fly/z) +af'(y/x) (—y/z*),af (y/x) - (1)), ~1)

(£w/2) = 27 w/). £ (y/2), 1)



At the point (g, yo, zof(yo/zo)) the normal vector will be

n = Vg(zo,y0,20) = (f(yo/mo) - %gf/(yo/xo),f/(yo/fo)a —1> (7)

so the equation of the normal plane to the surface passing through the point is

F(wo/z0) — igj“<yo/xoﬂ w4 f (o 0)y—= = [f<yo/mo>-— igf“<yo/xoﬂ 2o+ (4o /20)-Yo—0f (yo /o)
®)

which we can simply as
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Observe that the origin (0,0,0) does satisfy the equation of this plane.

Problem 4. Let f(z,y) = v — y? and g(z,y) = 2z + Iny. Show that the level
curves of f and g are orthogonal at every point where they meet.
The level curve at height z = ¢ for f solves the equation

r—yt=c (10)
This can be used to write z as a function of y as
r=c+y? (11)
so the position vector of this level curve is
ri(y) = (2,y,2) = (c+y°,y,c) (12)

so the velocity vector to the curve is

dI‘f
— = (2y,1,0 13
dy ( y’ ) ) ( )

On the other hand, the level curve at height z = ¢ for g solves the equation
2z +Iny =c (14)
This can be used to write z as a function of y as

c—lIny
= — 15
T 5 (15)

so the position vector of this level curve is

re(y) = (z,y,2) = (C_Zlnyy0> (16)



so the velocity vector to the curve is

dr, 1

29— (1 1

- ( - ,o> (17)
dry dry

= (29,1,0) L 1 0)=—141=0 (18)
dy dy - y7 ) 2y ) 9 - -

so in fact the velocity vectors are orthogonal.

Notice that

Problem 5. If three resistors R;, Ro, R3 are connected in parallel, the total
electrical resistance is determined by the equation

1 1 1 1

-4 4= 19
R R + Ry + R3 (19)
Find 2£.
We differentiate both sides of the equation with respect to R;:
0 0 1 0 1 0 1
— (RY) = — | = — | = — | = 20
or, () 6R1<}ﬁ>_%8R1(Ib)_%6R1<I@> (20)
By the chain rule this is the same as
1\* 9R 1
(=) = = _— 21
<R> ORy R? (21)
so this is the same as )
1 1 1 OR 1
(et —) = 22
<R1 + Ry + R3> OR; R? (22)
In other words
OR 1 1 1 1 R3R3
ORy (; L1 i)z R? (R2R3+R1R3+R1R2)2 R? " (RaR3+ R1R3 + R1R»)?
Ry R> R3 R1R2R3
(23)

Another way to find is by finding R as a function of Ry, R, R3 explicitly. Namely, notice
that the equation for % is equivalent to

1  RoRs+ RiR3+ RiRy

— 24
R R1Rs5R3 ( )
o RiRsR
R— 1412113 25
RoR3+ R1R3s+ Ri1Ro ( )



We can find the partial derivative using the quotient rule

OR _ R2R3(R2R3 + R1R3 + R1R2) — R1R2R3(R3 + RQ) R%R%

O0R; (R2R3 + R1Rs + R1R2)2 (R2R3 + R1Rs + R1R2)2
(26)

Problem 6. Suppose that a duck is swimming in a circle, x = cost, y = sint,
while the water temperature is given by the formula T = z2¢¥ — zy3. Find %
using the chain rule.

Here is the diagram

T
/ \
z y (27)
| \
t t
Therefore
g
dt
_OTds 0T
S Oxdt Oy dt

=(2ze¥ — y*)(—sint) + (z%e¥ — 3zy?)(cost)

=(2coste* ™! —sin®t)(—sint) + (cos? te""? — 3 costsin® t)(cost)

Problem 7. Show that the tangent plane at each point (z, 9, 20) of the cone

2z = /2% + y?, (with x¢ # 0, yo # 0) contains the line passing through (zg, 0, 20)
and the origin.

2

Notice that the equation of the cone can be written as 22 = z? + y? so we can work

with the equation of the surface
gz, y,2) = a® + 4y = 22 (28)

The gradient is
Vg = (2z,2y,—2z) (29)

So at the point (2o, yo, v/23 + y3) the equation of the tangent plane is [n = (2o, 2yo, —2/23 + y3)
in this case|

2z + 2yoy — 2\/1“% + y%z = 2x0z0 + 2Y0Yo — Z(xg + y(Q)) =0 (30)

The line passing through (o, yo, 20) = (%0, Yo, /2§ + y3) and the origin is

r(t) = t(zo, Yo, \/ 2§ + ¥3) (31)

so we need to check that each point on the line satisfies the equation of the plane. We
plug in tx, tyo,t x% + y% as our values for z,y, z on the left hand side of the equation



of the plane

2z 4 2yoy — 2

=2xptxo + 2yotyo — 2\/37(2) + ydt\/xd +y2
=t (2a + 2y — 2(25 +5))

=t-0

=0

Notice that this equation holds regardless of the specific value of ¢, so we verified the
assumption.

Problem 8. Let r = zi + yj + zk and r = ||r|| = /22 + y? + 22
a) Show that V (1) = —75 whenever r # 0.
Notice that x,y, z appear in a symmetric fashion in each of the formulas, so it suffices

to compute 8% (%) to figure out the pattern. For this we use the product rule

8(1)2 10 :_%5‘ o 1 x oz

oz \r = 2 Ox 222422 Vi +y2 4 22 r3
(32)

Therefore

N (0 40 10 4\ (x y zy_ 1
V(?)—(ar e s EE ) @
b) What is ||V (1) ||?
1 1 T 1
—1 _ _ _ _

1971 = Il = 5l = 5l = 5 = (34)



c) In electrostatics, the force F. of attraction between two particles of op-
posite charge is given by F. = k5. A potential function V for the electrostatic
force is a scalar function V = V(z,y, z) such that VV = —F. (here I am using
the physicist convention for the potential). Find a potential V for F..

Take

V=2 (35)

and notice that thanks to part a)
VV = —V(k/r) = —kV(1/r) = kr% ~F. (36)

as desired.

Problem 9. Show that the surface 2> — 2yz + 3> = 4 is perpendicular to any
member of the family of surfaces 22 + 1 = (2 — 4a)y? + az? at the point of
intersection (1,—1,2).

The equation for the first surface is

gz, y,2) =2 =2z 413> —4=0 (37)
Which has gradient
Va1 = (2z, -2z + 3y%, —2y) (38)
so the normal vector at the point (1,—1,2) is
Vi (1,-1,2) = (2,-1,2) (39)
The equation for the second surface is
g2(x,y,2) = 2> +1— (2 — 4a)y? — az? (40)
so the gradient is
Vgs = (2z,-2(2 — 4a)y, —2az) (41)

The normal vector at the point (1,—1,2) is
Vga(1,-1,2) = (2,4 — 8a, —4a) (42)
Notice that Vg1 (1, —1,2) and Vga(1, —1,2) are orthogonal since
(2,-1,2) - (2,4 —8a,—4a) =4 +8a— 4 —8a =0 (43)
so the tangent planes indeed intersect orthogonally.

Problem 10. Find the directional derivative of U(z,y,2) = 223y — 3y%2 at the
point P = (1,2, —1) in a direction toward the point Q = (3, —1,5).
The direction vector is

v=PO=Q-P=(3,-1,5)—(1,2,~1) = (2,-3,6) (44)
We need to normalize it
2.-3.6 1
- @30 1y 5 (45)

ey =
V2 +(-3)2+62 7




On the other hand the, gradient is

VU = (62%y, 22° — 6yz, —3y?) (46)
so at the point (1,2, —1) the gradient is

vU(1,2,—-1) = (12,14, -12) (47)
and the directional derivative is

24-42-72 90

1
DyU(1,2,-1) = VU(1,2,-1) - ey = (12,14, ~12) - (2,-3,6) = = -

7
(48)



